Gravitinos, Reheating and the Matter-Antimatter Asymmetry of the Universe

> Raghavan Rangarajan Physical Research Laboratory Ahmedabad

OUTLINE

- THE MATTER-ANTIMATTER ASYMMETRY OF THE UNIVERSE
- INFLATION AND REHEATING
- THE GRAVITINO PROBLEM, AND T_{reh}

REHEATING, GRAVITINOS AND THE M-A ASYMMETRY

- SOLUTIONS TO THE GRAVITINO PROBLEM
- GRAVITINO PROBLEM AGAIN

CONCLUSION

MATTER-ANTIMATTER ASYMMETRY OF THE UNIVERSE

- SOLAR SYSTEM PROBES, INTERACTION OF
 SOLAR WIND WITH PLANETS
- MILKY WAY COSMIC RAYS
- CLUSTER (20 Mpc) GALACTIC COLLISIONS
 INTERGALACTIC HOT PLASMA
- UP TO 1000 Mpc COSMIC DIFFUSE GAMMA RAY SPECTRUM
 (ANNIHILATIONS AT BOUNDARY FROM z=1000 TO 20 – 380,000 YR TO 100 MILLION YR)
 (Cohen, de Rujula, Glashow) ³

MATTER-ANTIMATTER ASYMMETRY OF THE UNIVERSE

- ANTIMATTER RULED OUT TILL d~1000 Mpc
- SIZE OF OBSERVABLE UNIVERSE ~ct_u=4000 Mpc

 $(1 \text{ Mpc} = 3 \text{ x } 10^{19} \text{ km} = 3 \text{ x } 10^{6} \text{ lt-yr})$

MATTER-ANTIMATTER ASYMMETRY OF THE UNIV

- EARLY TIMES (t < 1 s = PRIM. NUCL.) EQUAL AMOUNTS OF MATTER AND ANTIMATTER
- WHY THIS ASYMMETRY TODAY? WHERE DID THE ANTIMATTER GO?

- EARLY TIMES (t < 1 s = PRIM. NUCL.) EQUAL AMOUNTS OF MATTER AND ANTIMATTER
- WHY THIS ASYMMETRY TODAY? WHERE DID THE ANTIMATTER GO?
- DISEQUILIBRIUM IN THE EARLY UNIVERSE 100 M + 100 A \rightarrow 103 M + 101 A \rightarrow 2 M

 $X \to M \qquad \qquad X \to A$

 $r_{\rm M} > r_{\rm A}$, GET MORE MATTER THAN ANTIMATTER

- X = GUT GAUGE/HIGGS BOSONS – GUT BARYOGENESIS MASS ($M_X \sim 10^{16}$ GeV)
- X = HEAVY RIGHT HANDED MAJORANA NEUTRINOS – LEPTOGENESIS MODELS MASS ($M_N \sim 10^{10}$ GeV)

1 GeV = PROTON MASS

WHEREFROM

- GUT GAUGE/HIGGS BOSONS ($M_X \sim 10^{16} \text{ GeV}$)
- HEAVY RIGHT HANDED MAJORANA NEUTRINOS $(M_N \sim 10^{10} \text{ GeV})$?

1 GeV = PROTON MASS

INFLATION and REHEATING

INFLATION – PERIOD OF ACCELERATED EXPANSION IN THE EARLY UNIVERSE (t ~ 10^{-38} s or later)

ASSOCIATED WITH THE DYNAMICS OF A SLOWLY VARYING FIELD CALLED THE INFLATON Φ

DURING INFLATION, R~ exp(H t) [R IS THE SCALE FACTOR, $d(t) = d_i R(t)$]

n OF ALL SPECIES $\rightarrow 0$

INFLATON DECAY PRODUCTS THERMALISE, T_{reh} THERMAL BATH HAS q, I, H, dm, BSM INCLUDING GUT PARTICLES AND HEAVY NEUTRINOS REHEATING

OUTLINE

- THE MATTER-ANTIMATTER ASYMMETRY OF THE UNIVERSE
- INFLATION AND REHEATING
- THE GRAVITINO PROBLEM, AND T_{reh}

REHEATING, GRAVITINOS AND THE M-A ASYMMETRY

- SOLUTIONS TO THE GRAVITINO PROBLEM
- GRAVITINO PROBLEM AGAIN

CONCLUSION

GRAVITINOS

 $\tilde{G} =$ SUPERSYMMETRIC PARTNER OF THE GRAVITON

SUPERSYMMETRY

- EXTENSION OF THE STANDARD MODEL (GAUGE HIERARCHY)
- SUPERPARTNERS: FERMION BOSON

PHOTON – PHOTINO, ELECTRON – SELECTRON (EQUAL m, IF SUSY)

LOCAL SUPERSYMMETRY: SUPERGRAVITY

 $\mathsf{GRAVITON} - \mathsf{GRAVITINO}\;(\tilde{G})$

BROKEN $(m_{\tilde{G}} : eV - TeV)$

GRAVITINOS

 $\tilde{G} =$ SUPERSYMMETRIC PARTNER OF THE GRAVITON

PRODUCED AFTER INFLATION $t \sim 10^{-38} \,\mathrm{s} \,(m_{\tilde{G}} : \mathrm{eV} - \mathrm{TeV})$

COSMOLOGICAL CONSEQUENCES (m, n)

- STABLE : AFFECTS EXPANSION RATE, $\rho_{\tilde{G}} > \rho_c$ (L/H)
- UNSTABLE : AFFECT EXPANSION RATE PRIOR TO DECAY

DECAY PRODUCTS $\rho > \rho_c$

DESTROY LIGHT ELEMENTS ${}^{4}He$, ${}^{3}He$, D (NUCLEOSYNTHESIS)

GRAVITINO PROBLEM(S)

GRAVITINOS

 $\tilde{G} =$ SUPERSYMMETRIC PARTNER OF THE GRAVITON

PRODUCED AFTER INFLATION $t \sim 10^{-34} \,\mathrm{s} \,(m_{\tilde{G}} : \mathrm{eV} - \mathrm{TeV})$

COSMOLOGICAL CONSEQUENCES (m, n)

- STABLE : AFFECTS EXPANSION RATE, $\rho_{\tilde{G}} > \rho_c$ (L/H)
- UNSTABLE : AFFECT EXPANSION RATE PRIOR TO DECAY

DECAY PRODUCTS $\rho > \rho_c$

DESTROY LIGHT ELEMENTS ${}^{4}He$, ${}^{3}He$, D (NUCLEOSYNTHESIS)

GRAVITINO PROBLEM(S) => UPPER BOUND ON $ho_{ ilde{G}} \propto n_{ ilde{G}}$

STANDARD PICTURE OF GRAVITINO PRODUCTION

INFLATION \rightarrow REHEATING (OSC. + DECAY) (T_{reh})

→ RADIATION DOMINATED UNIV (Relativistic particles)

THERMAL SCATTERING $\rightarrow G$ (gluons, quarks, squarks, gluinos) ¹⁵

STANDARD CALC OF GRAVITINO PRODUCTION

CALCULATE GRAVITINO PRODUCTION IN THE RAD DOM ERA

MAINLY PRODUCED AT THE BEGINNING OF THE RAD DOM ERA WHEN $~T\sim T_{\rm reh}$, AND $~n_{\tilde{G}}\propto T_{\rm reh}.$

UPPER BOUND ON $n_{\tilde{G}}$

 \Rightarrow UPPER BOUND ON T_{reh} OF 10⁶⁻⁹ GeV (MASS 100 GeV – 10 TeV)

1 GeV =10¹³ K

 THE UPPER BOUND ON THE REHEAT TEMPERATURE 10⁶⁻⁹ GeV TO SUPPRESS GRAVITINO PRODUCTION

- THE UPPER BOUND ON THE REHEAT TEMPERATURE 10⁶⁻⁹ GeV TO SUPPRESS GRAVITINO PRODUCTION
- MATTER-ANTIMATTER ASYMMETRY GENESIS MODELS REQUIRE HEAVY X, MASS 10¹⁰, 10¹⁶ GeV

- THE UPPER BOUND ON THE REHEAT TEMPERATURE 10⁶⁻⁹ GeV TO SUPPRESS GRAVITINO PRODUCTION
- MATTER-ANTIMATTER ASYMMETRY GENESIS MODELS REQUIRE HEAVY X, MASS 10¹⁰, 10¹⁶ GeV

DIFFICULT TO HAVE ENOUGH HEAVY X IN THE RADIATION DOMINATED UNIV AFTER REHEATING

$$n_X \sim exp(-m c^2/k_BT)$$

- THE UPPER BOUND ON THE REHEAT TEMPERATURE 10⁶⁻⁹ GeV TO SUPPRESS GRAVITINO PRODUCTION
- MATTER-ANTIMATTER ASYMMETRY GENESIS MODELS REQUIRE HEAVY X, MASS 10¹⁰, 10¹⁶ GeV

DIFFICULT TO HAVE ENOUGH HEAVY X IN THE RADIATION DOMINATED UNIV AFTER REHEATING

LOW REHEAT TEMPERATURE IS A PROBLEM FOR GUT BARYOGENESIS AND LEPTOGENESIS ²¹

OUTLINE

- THE MATTER-ANTIMATTER ASYMMETRY OF THE UNIVERSE
- INFLATION AND REHEATING
- THE GRAVITINO PROBLEM, AND T_{reh}

REHEATING, GRAVITINOS AND THE M-A ASYMMETRY

- SOLUTIONS TO THE GRAVITINO PROBLEM
- GRAVITINO PROBLEM AGAIN

CONCLUSION

SOLUTIONS

WE FOCUS ON LEPTOGENESIS MODELS – OUT OF EQM DECAY OF *N*.

POPULAR – RELATED TO LIGHT NEUTRINO MASSES

MASS $M_N \sim 10^{10} \text{ GeV}$

SOLUTIONS

PROBLEM: TWO SPECIES NEUTRINOS AND GRAVITINOS

BOTH CREATED IN THE SAME THERMAL ENVIRONMENT

-- RADIATION DOMINATED UNIVERSE AFTER REHEATING

WANT N (M-A ASYMMETRY) BUT NOT \tilde{G}

CAN INCREASE N

OR

SUPPRESS \tilde{G}

DELAYED THERMALISATION DURING REHEATING DUE TO SUSY FLAT DIRECTIONS 25

DECREASE $ilde{G}$

DETAILED VIEW OF REHEATING

PREHEATING (WORKS FOR GUT BARYOGENESIS TOO)

SOFT LEPTOGENESIS

RESONANCE LEPTOGENESIS

INCREASE N

SOLUTIONS

SUSY FLAT DIRECTIONS

STANDARD MODEL , *H* SCALAR (SPIN 0) SCALAR POTENTIAL IN SUSY IS A FUNCTION OF $(H_u, H_d, \tilde{q}_i, \tilde{l}_i)$

DIRECTIONS IN FIELD SPACE OF SCALARS ALONG WHICH THE SCALAR POTENTIAL VANISHES — FLAT DIRECTIONS

UDD:
$$\langle \tilde{u}_L \rangle = \psi, \ \langle \tilde{s}_L \rangle = \psi, \ \langle \tilde{b}_L \rangle = \psi$$
 phases

REPRESENTED BY A FIELD $\Psi\,$ (AFFLECK-DINE FIELD) WITH VEV ψ

SUSY FLAT DIRECTIONS

COSMOLOGICAL CONSEQUENCES

NON-ZERO VALUE OF ψ GIVES MASS TO GAUGE BOSONS (BREAKS GAUGE SYMMETRY),

e.g., $L \supset \tilde{q}^* \tilde{q} A A$

COSMOLOGICAL CONSEQUENCES

NON-ZERO VALUE OF ψ GIVES MASS TO GAUGE BOSONS (BREAKS GAUGE SYMMETRY),

e.g., $L \supset \tilde{q}^* \tilde{q} A A$

IF ALL GAUGE BOSONS GET MASS [LLddd, QuQue], IT SLOWS DOWN THERMALISATION AFTER INFLATION.

SUPPRESSES GRAVITINO PRODUCTION ALLAHVERDI AND MAZUMDAR

(FLAT DIRECTION DECAYS BEFORE EWSB t~10⁻¹¹ s)

COSMOLOGICAL CONSEQUENCES

GRAVITINOS PRODUCED BY SCATTERING OF INFLATON DECAY PRODUCTS

 $n_{\tilde{G}}\,$ depends on $\,n\,$ of scatterers

STANDARD PICTURE: INFLATON DECAYS $\rightarrow n_0 \rightarrow$ THERMALISE KINETIC EQM n_0 CHEMICAL EQM n_1

FLAT DIRECTIONS THAT BREAK ALL GAUGE SYMM INFLATON DECAYS $\rightarrow\!\mathcal{N}_0$ \rightarrow Delayed thermalisation

$$n \sim n_0 \ll n_1 \qquad [10^4]$$

DILUTE PLASMA, $n_{\tilde{G}} \downarrow \qquad N \downarrow$

RESULTS

SUPPRESSED GRAVITINO PRODUCTION DUE TO

A) DILUTE PLASMA B) PHASE SPACE SUPPRESSION $q + \overline{\tilde{q}} \rightarrow g + \widetilde{G} \qquad q + \overline{q} \rightarrow \widetilde{g} + \widetilde{G} \qquad \widetilde{q} + \overline{\tilde{q}} \rightarrow \widetilde{q} + \widetilde{G}$

OUTGOING GLUON/GLUINO HEAVY GRAVITINO PRODUCTION SHUTS OFF WHEN THE ENERGY OF INCOMING QUARKS/SQUARKS < $m_{g,\tilde{g}}_{31}$

PRODUCTION AFTER THE FLAT DIRECTION DECAYS IS NOT LARGE $\propto T_f$ [10⁵ GeV] [RR, A. SARKAR] 32

COMPLETE SHUT OFF

$$Y_{\tilde{G}} = 4 \times 10^{-18}, 10^{-20} < 10^{-14}$$

A) DILUTE PLASMAB) PHASE SPACE SUPPRESSION

SUPPRESSED GRAVITINO PRODUCTION DUE TO

RESULTS

ALTERNATE SCENARIO WITH SUSY FLAT DIRECTIONS

GRAVITINO OVER-PRODUCTION

GRAVITINO PROBLEM AGAIN!

- IF A FLAT DIRECTION GIVES MASS TO SOME BUT NOT ALL GAUGE BOSONS, THERMALISATION WILL OCCUR
- CONSIDERED SUCH A FLAT DIRECTION [H_u H_d]

PHOTONS, GLUONS AND PHOTINOS AND GLUINOS LIGHT QUARKS AND SQUARKS HEAVY

 $\tilde{g} + q \longrightarrow \tilde{q}^* \longrightarrow \tilde{G} + q$

GRAVITINO PROBLEM AGAIN!

$$\tilde{g} + q \longrightarrow \tilde{q}^* \longrightarrow \tilde{G} + q$$

RESONANT PRODUCTION OF GRAVITINOS WHEN

 $E_{\tilde{g}} + E_q \approx m_{\tilde{q}}$

GRAVITINO ABUNDANCE GENERATED IS VERY
 LARGE AND GREATER THAN THE COSMOLOGICAL
 UPPER BOUND FOR MOST PARAMETER SPACE

GRAVITINO PROBLEM AGAIN!

$$\tilde{g} + q \longrightarrow \tilde{q}^* \longrightarrow \tilde{G} + q$$

RESONANT PRODUCTION OF GRAVITINOS WHEN

$$E_{\tilde{g}} + E_q = m_{\tilde{q}}$$

- GRAVITINO ABUNDANCE GENERATED IS VERY
 LARGE AND GREATER THAN THE COSMOLOGICAL
 UPPER BOUND FOR MOST PARAMETER SPACE
- COSMOLOGICAL UPPER BOUND IS Y < 10^{-14}
- FOR DIFFERENT SETS OF PARAMETERS

 $Y = 10^{-8} - 10^{-2}$
GRAVITINO PROBLEM AGAIN!

- LARGE VALUES FOR SUSY FLAT DIRECTIONS IS GENERIC. EXACERBATED GRAVITINO PROBLEM
- HAVE TO INVOKE EARLY DECAY OF FLAT
 DIRECTIONS TO AVOID CONFLICT

[MAHAJAN, RR, A. SARKAR]

CONCLUSION

- 1. POPULAR MODELS OF GENERATING THE MATTER-ANTIMATTER ASYMMETRY OF THE UNIVERSE REQUIRE A LARGE REHEAT TEPERATURE AFTER INFLATION
- 2. BUT THAT GENERATES TOO MANY GRAVITINOS IN THE UNIVERSE
- 3. COSMOLOGISTS ARE LOOKING FOR MECHANISMS TO ENHANCE NEUTRINO ABUNDANCE/SUPPRESS GRAVITINO ABUNDANCE

CONCLUSION

- 4. GRAVITINO ABUNDANCE GENERATED IN A NON-THERMAL UNIVERSE IN THE PRESENCE OF FLAT DIRECTIONS IS SUPPRESSED
- 5. GRAVITINO ABUNDANCE IN A THERMAL UNIVERSE WITH FLAT DIRECTIONS CAN BE LARGE – NEW SOURCE OF THE GRAVITINO PROBLEM

(DETAILS OF SUSY MODEL)

FLAT DIRECTION \rightarrow QUADRATIC POT WITH CURV m₀

 $\psi_0 \neq 0~$ due to quantum fluctuations during inflation; other reasons

WHEN H ~ m_0 , Ψ OSCILLATES, $\psi \sim 1/R^{3/2}$ Then it decays (before t_ew)

Reheating, Gravitinos and the Matter-Antimatter Asymmetry of the Universe

> Raghavan Rangarajan Physical Research Laboratory Ahmedabad, India

> > with N. Sahu, A. Sarkar, N. Mahajan

SOLUTION 1

INCREASE N

DETAILED VIEW OF REHEATING

UPTIL NOW ASSUMED INSTANTANEOUS INFLATON DECAY AND REHEATING.

INFLATON OSCILLATES. AT $t = \Gamma_{\phi}^{-1}, T: 0 \to T_{reh}$

 $T_{reh} \text{ IS INITIAL AND MAX TEMP OF RAD DOM ERA}$ $T_{reh} < M_N \quad \text{PROBLEM FOR LEPTOGENESIS}$

STANDARD CALC OF N PRODUCTION ALSO ASSUMES INSTANTANEOUS INFLATON DECAY AND REHEATING.

 $T \to T_{max} \to T_{reh}$

KOLB & TURNER

 $T_{\rm reh}\,$ is the final temperature at the end of Reheating

THE SOLUTION

$T_{\rm max}\,$ can be as high as 1000 $T_{\rm reh}\,$

SO SUFFICIENT NUMBER OF HEAVY RIGHT-HANDED NEUTRINOS (N) WITH $M_N \sim 10 \, {\rm T_{reh}}$ CAN BE PRODUCED DURING REHEATING

CHUNG ET AL, DELEPINE AND SARKAR, GIUDICE ET AL

IF $\mathrm{T}_{\mathrm{max}}$ CAN ENHANCE NEUTRINO PRODUCITON, CAN IT ALSO

ENHANCE GRAVITINO PRODUCTION ?

IF $n_{ ilde{G}}$ (RAD DOM ERA) $\propto T_{
m reh}$ (MAX TEMP OF RAD DOM ERA),

WILL $n_{\tilde{G}}$ (REHEATING ERA) $\propto T_{\max}$?

- IF $n_{\tilde{G}}(\text{REH}) \gg n_{\tilde{G}}(\text{RD})$, GET BOUNDS ON T_{max}
- -- THEN THE PROBLEM FOR LEPTOGENESIS CAN REAPPEAR

CALCULATE $n_{ ilde{G}}$ (REH)

- EXPECT $n_{\tilde{G}}(T_{MAX})$
- $n_{\tilde{G}}(\text{REH}) >, < n_{\tilde{G}}(\text{RD})$

GRAVITINO PRODUCTION DURING REHEATING $V(\Phi)$

INFLATON DECAYS AND DECAY PRODUCTS THERMALISE QUICKLY $\Rightarrow T(t)$

$$\frac{dn_{\tilde{G}}}{dt} + 3Hn_{\tilde{G}} = \langle \Sigma_{\text{tot}} | v | \rangle n^2$$

$$\dot{\mathrm{T}}\,\frac{dn_{\tilde{G}}}{d\mathrm{T}} + 3Hn_{\tilde{G}} = \langle \Sigma_{\mathrm{tot}} |v| \rangle n^2$$

$$\frac{dn_{\tilde{G}}}{dt} + 3Hn_{\tilde{G}} = \langle \Sigma_{\text{tot}} | v | \rangle n^2$$

- H = HUBBLE PARAMETER (DILUTION DUE TO EXPANSION)
- $\Sigma_{tot} = -$ TOTAL CROSS SECTION FOR GRAVTINO PRODUCTION
 - v = RELATIVE VELOCITY OF THE INCOMING PARTICLES
- $\langle \rangle$ THERMAL AVERAGING

 $n = \frac{1.2}{\pi^2} \,\mathrm{T}^3$ number density of scatterers

IGNORED DECAY $\tau \sim 10^{7-8} \left(100 \text{GeV}/m_{\tilde{G}}\right) \text{s}$

For $m_{\tilde{G}} \sim 100 \text{GeV}, \tau \sim 1 \text{ yr}$ decay not relevanted

CALCULATION OF $\langle \Sigma_{tot} | v | \rangle$

 \tilde{G} PRODUCED BY THE SCATTERING OF INFLATON DECAY PRODUCTS

e.g. $q + \bar{\tilde{q}} \to g + \tilde{G}$ $q + \bar{q} \to \tilde{g} + \tilde{G}$ $\tilde{q} + \bar{\tilde{q}} \to \tilde{g} + \tilde{G}$

 $\langle \Sigma_{\rm tot} | v | \rangle = \alpha / M_{Pl}^2$

PRADLER AND STEFFEN $G_N = 1/M_{Pl}^{\rm SO}$

$$\dot{\mathrm{T}} \, \frac{dn_{\tilde{G}}}{d\mathrm{T}} + 3Hn_{\tilde{G}} = \langle \Sigma_{\mathrm{tot}} | v | \rangle n^2$$

 $\rho_r \sim R^{-\frac{3}{2}} \Rightarrow \mathbf{T} \sim R^{-\frac{3}{8}} \sim t^{-1/4} \quad \text{[R IS THE SCALE FACTOR]} \\ R \sim t^{\frac{2}{3}}$

SOLVE FROM $\rm \ T_{max}$ to $\rm \ T_{reh}$.

$$n_{\tilde{G}}(T_{\rm reh}) = 0.007 \frac{\alpha}{M_{Pl}^2} \frac{T_{\rm max}^4 T_{\rm reh}^2}{H_{\rm max}} \qquad \text{for } T_{\rm max} \gg T_{\rm reh}$$

$$Y_{\tilde{G}}(\mathrm{T_{reh}}) = \frac{n_{\tilde{G}}(\mathrm{T_{reh}})}{s(\mathrm{T_{reh}})} = 0.01 \, g_{\mathrm{reh}}^{-1} \, \frac{\alpha}{M_{Pl}^2} \, \frac{\mathrm{T_{max}^4}}{H_{\mathrm{max}} \mathrm{T_{reh}}}$$

RESULTS

INCLUDE GRAVITINO PRODUCTION IN THE RAD DOM ERA FROM $T_{\rm reh}$ to $T_{\rm f}.$ Solve Boltzmann Eqn in RD era.

$$Y_{\tilde{G}}(\mathrm{T}_{\mathrm{f}}) = Y_{\tilde{G}}(\mathrm{T}_{\mathrm{reh}}) + 0.02 \, g_{\mathrm{reh}}^{-3/2} \, \frac{\alpha}{M_{Pl}} \, \mathrm{T}_{\mathrm{reh}} \qquad \mathrm{T}_{\mathrm{f}} \ll \mathrm{T}_{\mathrm{reh}}$$

EARLIER $Y_{\tilde{G}}(T_{reh})$ SET TO 0

$$Y_{\tilde{G}}(T_{\rm f}) = 0.03 \, g_{\rm reh}^{-1} \, \frac{\alpha}{M_{Pl}^2} \, \left[0.4 \, \frac{T_{\rm max}^4}{H_{\rm max} T_{\rm reh}} \, + \, 0.6 \, g_{\rm reh}^{-\frac{1}{2}} \, M_{Pl} T_{\rm reh} \right]$$

$$T_{\rm max} \simeq 0.8 \, g_*^{-\frac{1}{4}} M_{\rm I}^{\frac{1}{2}} \, (\Gamma_{\phi} M_{Pl})^{\frac{1}{4}}$$

 $M_I = \text{SCALE OF INFLATION} \le 10^{16} \text{ GeV}$ $\rho_{\phi} = M_I^4$ $\Gamma_{\phi} = \text{DECAY RATE OF THE INFLATON}$ $g_* = \text{NUMBER OF REL. DEG. OF FREEDOM ~ 230 IN MSSM}$ $T_{\text{reh}} \simeq 0.55 g_{*\text{reh}}^{-\frac{1}{4}} (M_{Pl}\Gamma_{\phi})^{\frac{1}{2}}$ $\sqrt{2-M^2}$

$$H_{\rm max} \simeq \sqrt{\frac{8\pi}{3}} \frac{M_I^2}{M_{Pl}}$$

KOLB AND TURNER

2 INDEPENDENT VARIABLES

$$Y_{\tilde{G}}(T_{\rm f}) = 0.03 \, g_{\rm reh}^{-1} \, \frac{\alpha}{M_{Pl}^2} \, \left[0.4 \, \frac{T_{\rm max}^4}{H_{\rm max} T_{\rm reh}} \, + \, 0.6 \, g_{\rm reh}^{-\frac{1}{2}} \, M_{Pl} T_{\rm reh} \right]$$

$$H_{\rm max} = 2.0 \, g_*^{\frac{1}{2}} \frac{T_{\rm max}^4}{T_{\rm reh}^2 \, M_{Pl}}$$

$$Y_{\tilde{G}}(T_{\rm f}) = 0.007 \, g_{\rm reh}^{-3/2} \frac{\alpha}{M_{Pl}} [T_{\rm reh} + 3.0 \, T_{\rm reh}]$$

• DEPENDENCE ON T_{max} CANCELS OUT [UNEXPECTED]

$$Y_{\tilde{G}}(T_{\rm f}) = 0.03 \, g_{\rm reh}^{-1} \, \frac{\alpha}{M_{Pl}^2} \, \left[0.4 \, \frac{T_{\rm max}^4}{H_{\rm max} T_{\rm reh}} \, + \, 0.6 \, g_{\rm reh}^{-\frac{1}{2}} \, M_{Pl} T_{\rm reh} \right]$$

$$H_{\rm max} = 2.0 \, g_*^{\frac{1}{2}} \frac{{\rm T}_{\rm max}^4}{{\rm T}_{\rm reh}^2 M_{Pl}}$$

$$Y_{\tilde{G}}(T_{\rm f}) = 0.007 \, g_{\rm reh}^{-3/2} \frac{\alpha}{M_{Pl}} [T_{\rm reh} + 3.0 \, T_{\rm reh}]$$

- DEPENDENCE ON T_{max} CANCELS OUT [UNEXPECTED]
- GRAVITINO PRODUCTION DURING REHEATING IS COMPARABLE (1/3) TO THAT IN THE RADIATION DOMINATED ERA [UNEXPECTED]

COMPARISON WITH NUMERICAL ANALYSIS

KAWASAKI, KOHRI AND MOROI

NUMERICAL FIT TO FINAL

$$Y_{\tilde{G}} \simeq 1.9 \times 10^{-12} \times \left(\frac{T_{\rm reh}}{10^{10} \text{ GeV}}\right)$$

$$\times \left[1 + 0.045 \ln \left(\frac{T_{\rm reh}}{10^{10} \text{ GeV}}\right)\right] \left[1 - 0.028 \ln \left(\frac{T_{\rm reh}}{10^{10} \text{ GeV}}\right)\right]$$

SAME FUNCTIONAL FORM

GIUDICE, RIOTTO AND TKACHEV: SIMILAR RELATIVE MAGNITUDES

IMPLICATIONS FOR LEPTOGENESIS

NO LARGE ENHANCEMENT IN TOTAL GRAVITINO PRODUCTION

CHANGE IN THE BOUND ON THE REHEAT TEMPERATURE (FACTOR OF 4/3)

$T_{max} \sim T_{reh}^{\frac{1}{2}}$

NO NEW CONSTRAINTS ON T_{max} DUE TO GRAVITINO PRODUCTION DURINGIN REHEATING

SO NOT AFFECT SCENARIO OF PRODUCTION OF HEAVY NEUTRINOS DURING REHEATING 57

SOLUTION 2

DECREASE \tilde{G}

DELAYED THERMALISATION DURING REHEATING DUE TO SUSY FLAT DIRECTIONS

SUSY FLAT DIRECTIONS

STANDARD MODEL, H SCALAR (SPIN 0)

 $\langle H \rangle \neq 0 \Rightarrow q, l, W, Z \text{ GET MASS}$

IN SUPERSYMMETRIC STANDARD MODEL, HAVE

$$H_u, H_d, \tilde{q}_i, \tilde{l}_i$$

FOR SOME COMB. OF THESE SCALARS, THEIR INITIAL VALUE IN THE EARLY UNIVERSE AFTER INFLATION, NEED NOT BE 0 (Q FLUC, OTHER)

 $\langle \tilde{u} \rangle = \psi, \ \langle \tilde{s} \rangle = \psi, \ \langle \tilde{b} \rangle = \psi$ flat dir

 $\psi\,$ decreases in time, and then disappears (FLAT direction decay, before ewsb) $^{_{59}}$

EARLIER INFLATON DECAYS AND DECAY PRODUCTS THERMALISE QUICKLY

$$q + \bar{\tilde{q}} \to g + \tilde{G} \qquad q + \bar{q} \to \tilde{g} + \tilde{G} \qquad \tilde{q} + \bar{\tilde{q}} \to \tilde{g} + \tilde{G}$$

$$\dot{n}_{\tilde{G}} + 3Hn_{\tilde{G}} = \langle \Sigma_{\text{tot}} | v | \rangle n^2 \qquad n \sim T^3$$

NOW,
$$\dot{n}_{\tilde{G}} + 3Hn_{\tilde{G}} = \int d\Pi_1 \ d\Pi_2 \ f_1 \ f_2 \ W_{12}(s)$$

$f_{1,2}\,$ particle distribution functions for incoming particles

 $W_{12}(s) \propto \sigma_{CM}$

$$q + \bar{\tilde{q}} \to g + \tilde{G} \qquad q + \bar{q} \to \tilde{g} + \tilde{G} \qquad \tilde{q} + \bar{\tilde{q}} \to \tilde{g} + \tilde{G}$$

DISTRIBUTION FUNCTIONS

$$f_i = C_i \delta \left(E_i - \frac{m_I}{2} \frac{R_d}{R} \right) \qquad \text{for } t_d < t < t_{kin}$$

$$= \exp\left(-\frac{E_i - \xi_i}{T}\right)$$

for $t_{kin} < t < t_{thr}$

PHASE SPACE SUPPRESSION

OUTGOING GAUGE BOSON/ GAUGINO HEAVY GRAVITINO PRODUCTION SHUTS OFF WHEN THE ENERGY OF INCOMING QUARKS/SQUARKS < $m_{g,\tilde{g}^{51}}$

 SO FAR SEEN TWO SOLUTIONS OF THE GRAVITINO PROBLEM – INCREASING NEUTRINO, SUPPRESSING GRAVITINO

ALTERNATE SCENARIO

ALTERNATE SCENARIO

- IF FLAT DIRECTION VEV DOES NOT BREAK ALL GAUGE SYMMETRIES, THERMALISATION WILL OCCUR
- CONSIDER A SCENARIO WITH $H_u H_d$ FLAT DIRECTION. SU(3)_C x SU(2)_L x U(1)_Y \rightarrow SU(3)_C x U(1)_{EM}
- QUARK AND SQUARK HEAVY (NR), $m \approx h\psi$

$$m_{\tilde{q}}^2 - m_q^2 = m_S^2 \qquad m_S^2 \sim T^2 \ll m_{q,\tilde{q}}^2$$

• GLUINOS LIGHT (m ~ gT, REL), THERMAL DISTRIBUT.

GRAVITINO PROBLEM AGAIN!

$$\tilde{g} + q \longrightarrow \tilde{q}^* \longrightarrow \tilde{G} + q$$

- RESONANT PRODUCTION OF GRAVITINOS AS
 SQUARK CAN GO ON SHELL
- GRAVITINO ABUNDANCE GENERATED IS VERY
 LARGE AND GREATER THAN THE COSMOLOGICAL
 UPPER BOUND FOR MOST PARAMETER SPACE
- COSMOLOGICAL UPPER BOUND IS $Y < 10^{-14}$
- FOR DIFFERENT SETS OF PARAMETERS

 $Y = 10^{-8} - 10^{-2}$

GRAVITINO PROBLEM AGAIN!

- LARGE VEVS FOR SUSY FLAT DIRECTIONS IS GENERIC. EXACERBATED GRAVITINO PROBLEM
- HAVE TO INVOKE EARLY DECAY OF FLAT
 DIRECTIONS TO AVOID CONFLICT

CONCLUSION

- 4. NEUTRINOS GENERATED DURING REHEATING ~ GRAVITINO ABUNDANCE GENERATED NOT TOO LARGE
- 5. GRAVITINO ABUNDANCE GENERATED IN A NON-THERMAL UNIVERSE IN THE PRESENCE OF FLAT DIRECTIONS IS SUPPRESSED
- GRAVITINO ABUNDANCE IN A THERMAL UNIVERSE WITH FLAT DIRECTIONS CAN BE LARGE – NEW SOURCE OF THE GRAVITINO PROBLEM (DETAILS OF SUSY MODEL)

OUTLINE

- THE MATTER-ANTIMATTER ASYMMETRY OF THE UNIVERSE
- INFLATION AND REHEATING
- THE GRAVITINO PROBLEM, AND T_{reh}

REHEATING, GRAVITINOS AND THE M-A ASYMMETRY

- A WAY OUT: DETAILED VIEW OF REHEATING
- ANOTHER WAY OUT: DELAYED THERMALISATION
- GRAVITINO PROBLEM AGAIN

CONCLUSION

REHEATING, GRAVITINOS AND MATTER-ANTIMATTER ASYMMETRY

- THE UPPER BOUND ON THE REHEAT TEMPERATURE 10⁶⁻⁹ GeV TO SUPPRESS GRAVITINO PRODUCTION
- MATTER-ANTIMATTER ASYMMETRY GENESIS MODELS REQUIRE HEAVY X, MASS 10¹⁰, 10¹⁶ GeV

DIFFICULT TO PRODUCE HEAVY X IN THE RAD DOMINATED UNIV AFTER REHEATING

LOW REHEAT TEMPERATURE IS A PROBLEM FOR GUT BARYOGENESIS AND LEPTOGENESIS

SUMMARY OF THE PROBLEM

INFLATION \rightarrow REHEATING (T_{reh})

 \rightarrow RADIATION DOMINATED UNIV

THERMAL SCATTERING $\rightarrow \tilde{G}$ $\rightarrow N$

UPPER BOUND ON T_{reh} TO SUPPRESS \tilde{G} SUPPRESSES N TOO 70

GRAVITINO PRODUCTION DURING REHEATING $V(\Phi)$

INFLATON DECAYS AND DECAY PRODUCTS THERMALISE QUICKLY

$$\frac{dn_{\tilde{G}}}{dt} + 3Hn_{\tilde{G}} = \langle \Sigma_{\text{tot}} | v | \rangle n^2$$

$$\frac{dn_{\tilde{G}}}{dt} + 3Hn_{\tilde{G}} = \langle \Sigma_{\text{tot}} | v | \rangle n^2$$

- H = HUBBLE PARAMETER (DILUTION DUE TO EXPANSION)
- $\Sigma_{tot} = -$ TOTAL CROSS SECTION FOR GRAVTINO PRODUCTION
 - v = RELATIVE VELOCITY OF THE INCOMING PARTICLES
- $\langle \rangle$ THERMAL AVERAGING

 $n = \frac{1.2}{\pi^2} \,\mathrm{T}^3$ number density of scatterers

IGNORED DECAY $\tau \sim 10^{7-8} \left(100 \text{GeV}/m_{\tilde{G}}\right) \text{s}$

FOR $m_{\tilde{G}} \sim 100 \text{GeV}, \tau \sim 1 \text{ yr}$ decay not relevant?
QUARTIC POTENTIAL

- REDONE FOR A QUARTIC POTENTIAL $R \sim t^{1/2}$
- $H(T), \rho_{\phi}(T), \rho_{r}(T)$ different

$$Y_{\tilde{G}}(\text{REH}) = \frac{1}{2} Y_{\tilde{G}}(\text{RD})$$

CONCLUSION

OBTAINED AN ANALYTIC EXPRESSION FOR GRAVITINO

PRODUCTION DURING REHEATING

- THE ABUNDANCE IS OF THE SAME ORDER AS THAT DURING THE RADIATION DOMINATED ERA (THE STANDARD CALC)
- THE DEPENDENCE ON $\ T_{\rm max}$ cancels out
- NO NEW CONSTRAINTS ON LEPTOGENESIS MODELS

INVOKING $T_{\rm max}$

$$\dot{\mathrm{T}}\,\frac{dn_{\tilde{G}}}{d\mathrm{T}} + 3Hn_{\tilde{G}} = \langle \Sigma_{\mathrm{tot}} |v| \rangle n^2$$

 $n \sim T^3$, NEED \dot{T} AND H(T)

QUADRATIC INFLATON POTENTIAL DURING REHEATING, $~R\sim t^{rac{2}{3}}$

 $ho_r \sim R^{-rac{3}{2}} \Rightarrow \mathrm{T} \sim R^{-rac{3}{8}} \sim t^{-1/4}$ [R is the scale factor]

$$\dot{\mathrm{T}} = -\frac{3}{8}TH_{\mathrm{max}} \left(\frac{\mathrm{T}}{\mathrm{T}_{\mathrm{max}}}\right)^4$$

$$H = \frac{\dot{R}}{R} = -\frac{8}{3}\frac{\dot{T}}{T} = H_{\max}\left(\frac{T}{T_{\max}}\right)^4.$$

$$\begin{split} \dot{\mathrm{T}} & \frac{dn_{\tilde{G}}}{d\mathrm{T}} + 3Hn_{\tilde{G}} = \langle \Sigma_{\mathrm{tot}} | v | \rangle n^{2} \\ & n \sim \mathrm{T}^{3} , \text{ NEED } \dot{\mathrm{T}} \text{ AND } H(T) \end{split}$$
QUADRATIC INFLATON POTENTIAL DURING REHEATING, $R \sim t^{\frac{2}{3}}$
 $\rho_{r} \sim R^{-\frac{3}{2}} \Rightarrow \mathrm{T} \sim R^{-\frac{3}{8}} \sim t^{-1/4}$ [R IS THE SCALE FACTOR]
SOLVE FROM $\mathrm{T}_{\mathrm{max}}$ TO $\mathrm{T}_{\mathrm{reh}}$.
 $n_{\tilde{G}}(\mathrm{T}_{\mathrm{reh}}) = 0.007 \frac{\alpha}{M_{Pl}^{2}} \frac{\mathrm{T}_{\mathrm{max}}^{4} \mathrm{T}_{\mathrm{reh}}^{2}}{H_{\mathrm{max}}} \text{ for } \mathrm{T}_{\mathrm{max}} \gg \mathrm{T}_{\mathrm{reh}}$
 $Y_{\tilde{G}}(\mathrm{T}_{\mathrm{reh}}) = \frac{n_{\tilde{G}}(\mathrm{T}_{\mathrm{reh}})}{s(\mathrm{T}_{\mathrm{reh}})} = 0.01 g_{\mathrm{reh}}^{-1} \frac{\alpha}{M_{Pl}^{2}} \frac{\mathrm{T}_{\mathrm{max}}^{4}}{H_{\mathrm{max}}} 76 \end{split}$

$$\begin{split} \dot{\mathrm{T}} \, \frac{dn_{\tilde{G}}}{d\mathrm{T}} + 3Hn_{\tilde{G}} &= \langle \Sigma_{\mathrm{tot}} | v | \rangle n^2 \\ & \dot{\mathrm{T}}, \, H(\mathrm{T}), \, n \sim \mathrm{T}^3 \\ & \mathrm{T} \sim R^{-\frac{3}{8}} \quad R \sim t^{\frac{2}{3}} \quad [\mathrm{R} \text{ IS THE SCALE FACTOR}] \end{split}$$
SOLVE FROM T_{max} TO T_{reh}.

$$n_{\tilde{G}}(T_{\rm reh}) = 0.007 \frac{\alpha}{M_{Pl}^2} \frac{T_{\rm max}^4 T_{\rm reh}^2}{H_{\rm max}} \qquad \text{for } T_{\rm max} \gg T_{\rm reh}$$

$$Y_{\tilde{G}}(\mathrm{T_{reh}}) = \frac{n_{\tilde{G}}(\mathrm{T_{reh}})}{s(\mathrm{T_{reh}})} = 0.01 \, g_{\mathrm{reh}}^{-1} \, \frac{\alpha}{M_{Pl}^2} \, \frac{\mathrm{T_{max}^4}}{H_{\mathrm{max}} \mathrm{T_{reh}}}$$

IMPLICATIONS FOR LEPTOGENESIS

NO LARGE ENHANCEMENT IN TOTAL GRAVITINO PRODUCTION

THOUGH $T_{max} \gg T_{reh}$, AND $n_{\tilde{G}}(REH) < n_{\tilde{G}}(RD)$

• NO LARGE CHANGE IN THE BOUND ON THE REHEAT TEMPERATURE

UPPER BOUND ON $~T_{\rm reh}~$ OF $~10^{6-9} GeV~$ GOES DOWN BY 4/3 $\,$

• $T_{max} \sim T_{reh}^{\frac{1}{2}}$ SO NOT AFFECT PRODUCTION OF HEAVY

NEUTRINOS AT T_{max}

GRAVITINO PRODUCTION

• DETAILED VIEW OF REHEATING N $\uparrow\uparrow$ BUT $\tilde{G}\uparrow$

DELAYED THERMALISTION IN THE
 PRESENCE OF SUSY FLAT DIRECTIONS

SUSY FLAT DIRECTIONS

SCALAR POTENTIAL IN SUSY IS A FUNCTION OF $(\tilde{q},\tilde{l},H_u,H_d)$

DIRECTIONS IN FIELD SPACE OF SCALARS ALONG WHICH THE SCALAR POTENTIAL VANISHES

$$\langle \tilde{u}
angle = \psi, \; \langle \tilde{s}
angle = \psi, \; \langle \tilde{b}
angle = \psi$$
 phases

CALLED FLAT DIRECTIONS AS THE POTENTIAL IS FLAT AS YOU VARY THE VALUE OF ψ

INITIAL VALUE NEED NOT BE 0 (Q FLUC, OTHER) $\psi\,$ decreases in time, and then disappears (decays) $^{\rm 80}$

SUSY FLAT DIRECTIONS

SUSY BREAKING LIFTS THE POTENTIAL OF Ψ – GIVES MASS TO THE FIELD

INITIAL VALUE OF THE FIELD MAY BE AWAY FROM 0

WHEN H < m_{ψ} THE FIELD OSCILLATES IN ITS POTENTIAL

FINALLY Ψ decays, gauge symmetries restored

COSMOLOGICAL CONSEQUENCES

NON-ZERO VALUE OF THE FIELD Ψ GIVES MASS TO GAUGE BOSONS, e.g.,

$L \supset \tilde{q}^* \tilde{q} A A$

COSMOLOGICAL CONSEQUENCES

NON-ZERO VALUE OF THE FIELD Ψ GIVES MASS TO GAUGE BOSONS, e.g.,

$L \supset \tilde{q}^* \tilde{q} A A$

IF ALL GAUGE SYMMETRIES BROKEN [LLddd, QuQue], IT SLOWS DOWN THERMALISATION AFTER INFLATION.

DILUTE PLASMA. AFFECTS GRAVITINO PRODUCTION

ALLAHVERDI AND MAZUMDAR

EARLIER INFLATON DECAYS AND DECAY PRODUCTS THERMALISE QUICKLY

$$q + \bar{\tilde{q}} \to g + \tilde{G} \qquad q + \bar{q} \to \tilde{g} + \tilde{G} \qquad \tilde{q} + \bar{\tilde{q}} \to \tilde{g} + \tilde{G}$$

$$\dot{n}_{\tilde{G}} + 3Hn_{\tilde{G}} = \langle \Sigma_{\text{tot}} | v | \rangle n^2 \qquad n \sim T^3$$

NOW,
$$\dot{n}_{\tilde{G}} + 3Hn_{\tilde{G}} = \int d\Pi_1 \ d\Pi_2 \ f_1 \ f_2 \ W_{12}(s)$$

 $W_{12}(s) = 4p_{12} \ \sqrt{s} \ \sigma_{CM}(s)$

$$p_{12} = \left[s - (m_1 + m_2)^2\right]^{1/2} \left[s - (m_1 - m_2)^2\right]^{1/2} / [2\sqrt{s}]$$
$$s = (E_1 + E_2)^2_{CM}$$

- FLAT DIRECTION HAS A LARGE INITIAL VEV (DURING INFLATION)
- AFTER INFLATION, LARGE GAUGE BOSON MASS, SLOWS DOWN THERMALISATION
 DELAYED t_{KIN}
 DELAYED t_{CHEM}
- + VEV DECREASES AND FINALLY FLAT DIRECTION DECAYS AT $t_{\rm f}\,.$

GAUGE SYMMETRIES RESTORED ($t_f \ll t_{EW}$)

RESULTS

• $m_0 = 100 \text{ GeV} < \Gamma_{\psi} = 10^4 \text{ GeV}, \quad t_0 > t_d$

NO GRAVITINO PRODUCTION EVEN AFTER THERMALISATION TILL THE FLAT DIRECTIONS DECAYS, DUE TO PHASE SPACE SUPPRESSION

PRODUCTION AFTER THE FLAT DIRECTION DECAYS IS STANDARD $\,\propto T_f\,$ [105 GeV] LOW

RESULTS

• $m_0 = 100 \text{ GeV} > \Gamma_{\psi} = 10 \text{ GeV}, \quad t_0 < t_d$

SUPPRESSED GRAVITINO PRODUCTION TILL THERMALISATION

$$Y_{\tilde{G}} = 4 \times 10^{-18}, 10^{-20} < 10^{-14}$$

NO GRAVITINO PRODUCTION AFTER THERMALISATION TILL THE FLAT DIRECTION DECAYS

PRODUCTION AFTER THE FLAT DIRECTION DECAYS IS NOT LARGE $\propto T_f$ [105 GeV] $87

GRAVITINO PROBLEM AGAIN!

$$\tilde{g} + q \longrightarrow \tilde{q}^* \longrightarrow \tilde{G} + q$$

- RESONANT PRODUCTION OF GRAVITINOS AS
 SQUARK CAN GO ON SHELL
- GRAVITINO ABUNDANCE GENERATED IS VERY
 LARGE AND GREATER THAN THE COSMOLOGICAL
 UPPER BOUND FOR MOST PARAMETER SPACE

GRAVITINO PROBLEM AGAIN!

$$\tilde{g} + q \longrightarrow \tilde{q}^* \longrightarrow \tilde{G} + q$$

- RESONANT PRODUCTION OF GRAVITINOS AS
 SQUARK CAN GO ON SHELL
- GRAVITINO ABUNDANCE GENERATED IS VERY
 LARGE AND GREATER THAN THE COSMOLOGICAL
 UPPER BOUND FOR MOST PARAMETER SPACE
- COSMOLOGICAL UPPER BOUND IS $Y < 10^{-14}$
- FOR DIFFERENT SETS OF PARAMETERS

$$Y = 10^{-8} - 10^{-2}$$

RESULTS

- GRAVITINO ABUNDANCE SUPPRESSED
- LEPTOGENESIS IN THE NON-THERMAL UNIVERSE?

DILUTE PLASMA AFFECTS NUMBER DENSITY OF HEAVY RIGHT HANDED NEUTRINOS TOO

BUT SUFFICIENT TO CREATE REQUIRED BARYON ASYMMETRY

ALLAHVERDI AND MAZUMDAR

CONCLUSION

- 1. GRAVITINO ABUNDANCE GENERATED DURING REHEATING ~ ABUNDANCE GENERATED AFTERWARDS
- 2. GRAVITINO ABUNDANCE GENERATED IN A NON-THERMAL UNIVERSE IN THE PRESENCE OF FLAT DIRECTIONS IS SUPPRESSED
- 3. GRAVITINO ABUNDANCE IN A THERMAL UNIVERSE WITH FLAT DIRECTIONS CAN BE LARGE

CONCLUSION

- 4. NEUTRINOS GENERATED DURING REHEATING ~ GRAVITINO ABUNDANCE GENERATED NOT TOO LARGE (WITH SOME UNEXPECTED RESULTS)
- 5. GRAVITINO ABUNDANCE GENERATED IN A NON-THERMAL UNIVERSE IN THE PRESENCE OF FLAT DIRECTIONS IS SUPPRESSED (NEW CAUSES)
- GRAVITINO ABUNDANCE IN A THERMAL UNIVERSE WITH FLAT DIRECTIONS CAN BE LARGE – NEW SOURCE OF THE GRAVITINO PROBLEM