Primordial magnetic fields: Origin, evolution and signatures

Kandaswamy Subramanian

Inter-University Centre for Astronomy and Astrophysics, Pune 411 007, India.

Symposium on Astro-Particle and Nuclear Physics, Jamia Millia Islamia, Delhi, Jan. 21, 2014 – p.0/21

Summary

- The universe is magnetized.
- Early Universe Generation
- Evolution: Helical fields
- Magnetic signals in the CMB
- Primordial fields and early structure formation

A. Brandenburg & K. Subramanian, Physics Reports, 417, 1-205 (2005)
K. Subramanian, "Magnetizing the Universe", PoS proceedings, arXiv:0802.2804
K. Subramanian, Magneic fields in the early universe, AN, 2010, 331, 110

The magnetic Universe

The universe is Magnetized:

- **Sun (1** 10^3 gauss; 11 yr Solar cycle)
- Cosmic fields from synchrotron polarization and Faraday Rotation
- Galaxies: $B \sim 10 \mu G$, ordered on 10 kpc scales + random component
- **Clusters of Galaxies:** few μG strengths on ~ 10 kpc scales
- **J** Equally strong B in Young $z \sim 1-2$ galaxies (Bernet et al. 2008)
- **Even in the IGM voids?** ($B \ge 3 \times 10^{-16}$ Gauss; Mpc scales) (Neronov and Vovk, 2010; ... BUT SEE Broderick et al., 2011)

How do such large scale fields arise?

How can One Constrain/Detect Primordial B fields?

Galactic Magnetic Fields: Observations

- Synchrotron polarization and Faraday rotation probe B fields.
- M51 at 6 cm (Fletcher and Beck)
- Few μG mean Fields coherent on 10 kpc scales
- Correlated with optical spiral
- How do such large scale galactic fields arise?

Symposium on Astro-Particle and Nuclear Physics, Jamia Millia Islamia, Delhi, Jan. 21, 2014 – p.3/21

Origin: Primordial?

- Primordial magnetic fields: Origin in an early universe phase transition: Inflation (Turner and Widrow, 1988), Electroweak, QCD.
 - Provide Seed for dynamo? Help induce coherence?
 - Inflation: Strength? EW/QCD transitions: Scale?
- Detecting relic B fields can probe early universe physics?
- Flux freezing: On large scales $B(t)a^2(t) = \text{constant}$, So $B(z) = B_0(1+z)^2$
- ${}_{}$ $\rho_B=
 ho_\gamma$ (due to CMB) implies $B_0\sim 3\mu$ G.
- $B_0 \sim 10^{-9} G$ on galactic scales, interesting for Galaxy formation + galaxy/cluster *B*?
- Current upper limits of sub nanoGauss strength from limits of CMB nongaussianity (TRS,KS, PRL, 2009, Trivedi, TRS, KS, PRL, 2012; 2014)

Primordial fields versus Dynamos?

Dynamos required to maintain even primordial seed fields?

Symposium on Astro-Particle and Nuclear Physics, Jamia Millia Islamia, Delhi, Jan. 21, 2014 – p.5/21

Primordial fields origin during Inflation?

- Rapid expansion \rightarrow vacuum fluctuations amplified and stretched to long wavelength "classical" fluctuations
- Negligible charge density breaks flux freezing.
- **BUT Need to break conformal invariance of ED** (Couple to inflaton ϕ , higer dimensional scale factor b(t), curvature R, axion θ ...)

$$S = \int \sqrt{-g} \, d^4x \, \left[-f^2(\phi, R, b) \frac{1}{16\pi} F_{\mu\nu} F^{\mu\nu} - RA^2 + g\theta F_{\mu\nu} \tilde{F}^{\mu\nu} \right]$$

- EM wave amplified from vacuum fluctuations
- After reheating E shorted out and B frozen in. $(d\rho_B/d\ln k) = (C(\gamma)/2\pi^2) H^4(-k\eta)^{4+2\gamma} \approx (9/4\pi^2) H^4 \quad (\text{for } \gamma = -2)$ $B_0 \sim 5 \times 10^{-10} \text{G} \left(\frac{H}{10^{-4}M_{pl}}\right)$
- Exponentially sensitive to parameters, as need $B \sim 1/a^{\epsilon}$ Need huge growth of 'charge': a Problem? (Demozzi et al, 2009)

Extra dimensional magnetogenesis

EM theory with Gauss-Bonnet gravity (Kumar Atmjeet, Isha Pahwa, TRS, KS, PRD, 2014):

$$S = -\frac{1}{16\pi} \int \sqrt{-\tilde{g}} \, d^{4+D} x \, \tilde{F}_{\mu\nu} \tilde{F}^{\mu\nu} = -\frac{1}{16\pi} \int \sqrt{-g} \, d^4 x \left(\frac{b(t)}{b_0}\right)^D F^{\mu\nu} F_{\mu\nu}$$

- $A_i = (\Omega_D b_0^D)^{1/2} \tilde{A}_i$, Fix gauge: $A_0(t, \mathbf{x}) = 0$ and $\partial_j A^j(t, \mathbf{x}) = 0$
- To quantize, expand in terms of creation/anhibition operators $A_i(\eta, \mathbf{x}) =$ $\int \frac{\mathrm{d}^3 k}{(2\pi)^{3/2}} \sum_{\lambda=1}^2 \epsilon_{i\lambda}(\mathbf{k}) \left[b_{\lambda}(\mathbf{k}) A(\eta, k) \mathrm{e}^{i\mathbf{k}\cdot\mathbf{x}} + b_{\lambda}^{\dagger}(\mathbf{k}) A^*(\eta, k) \mathrm{e}^{-i\mathbf{k}\cdot\mathbf{x}} \right],$
- \checkmark Large class of solutions with $a(t) \propto e^{lpha t}$, $b(t) \propto e^{eta t}$
- Define $\mathcal{A}(\eta, k) \equiv a(\eta)(b(\eta)/b_0)^{D/2}A(\eta, k)$ ($d\eta = dt/a(t)$) $\mathcal{A}''(k, \eta) + \left[k^2 \frac{\xi(\xi-1)}{\eta^2}\right]\mathcal{A}(k, \eta) = 0; \qquad \xi = \frac{D}{2}\left(\frac{-\beta}{\alpha}\right)$
- **9** For D = 4, $\alpha = \beta$, $\gamma = \xi = -2 \rightarrow$ Scale invaraint spectrum.

Need mechanism for freezing b(t) evolution

From Electroweak/QCD Phase transition?

- Correlation scale usually tiny: $H^{-1} \sim 1 \text{ cm}$ (EW) or $\sim 10^4 \text{ cm}$ QCD phase transition or comoving $R_H \sim 100 \text{AU}/0.1 \text{ pc}$ Generates decaying MHD turbulence increasing coherence scale.
- Unless Helicity generation/Conservation leads to Inverse Cascade (Brandenburg et al, PRD 96, Banerjee & Jedamzik, 2004)
- Magnetic Helicity $H = \int_V \mathbf{A} \cdot \mathbf{B} \, dV$, $\nabla \times \mathbf{A} = \mathbf{B}$ A is vector potential, V is closed volume
- Measures links and twists in B

- Helicity is nearly conserved even when energy dissipated
- Helicity generation during EW baryogenesis: $H/V \sim n_b/\alpha!$ (Vachaspati, 2001; Copi et al 2008; Diaz-Gil et al, 2008)

B $\sim 5 \times 10^{-12} (L/1 \text{kpc})!$ (BJ,05): L quite uncertain.

Inverse cascade of helical B

 \otimes

Symposium on Astro-Particle and Nuclear Physics, Jamia Millia Islamia, Delhi, Jan. 21, 2014 – p.9/21

Helical B resilient to turbulent diffusion

Even sub equipartition Helical fields decay on slow resistive rate (EB,KS, 2013; Pallavi Bhat, EB, KS, MNRAS, 2014)

Power spectra with turbulent forcing at $k_f=5$

Symposium on Astro-Particle and Nuclear Physics, Jamia Millia Islamia, Delhi, Jan. 21, 2014 – p. 10/21

Probing Early Universe B

- $B^2/(8\pi\rho_{rad}) \sim 10^{-7}B_{-9}^2. \quad \text{Here } B_{-9} = B_0/(10^{-9}G)$
- Magnetic stress \Rightarrow metric perturbations, including Grav. Waves
- Lorentz force $\mathbf{J} \times \mathbf{B}/c \Rightarrow$ almost incompressible motions
- Overdamped by radiative viscosity, unlike compressible modes. (Jedamzik et al, 1998; KS, JDB 1998)
- Survives damping for $L_A > (V_A/c)L_{Silk} \ll L_{Silk}$
- CMB signals from metric and velocity perturbations
- Post recombination: $n_{rad}/n_b \gg 1 \Rightarrow$ compressible motions \Rightarrow seeds $\delta \rho / \rho \Rightarrow$ First Structures
- **B** field Dissipation \rightarrow Ionization, Heating, Molecules

Coherent primordial nG fields potentially detectable

CMB signals from tangled B fields

- Scalar Modes Subdominant to Inflation generated signal, (Shaw/Lewis, Giovannini/Kunze, Yamazaki et al., Finelli et al. Bonvin et al.)
- Vortical motion of fluid at LSS (Vector modes) (KS & Barrow 1998, KS, Seshadri, Barrow 2003)
- **Jensors Significant at** l < 100, (Durrer, Ferreira, Kahniashvilli, 2000 ...)
- Polarization B (Curl) modes due to Vectors/Tensors Scalars only induce E (Gradient) modes (Seshadri & KS, 2001; Mack et al 2002; Lewis 2004; Gopal & Sethi, 2005)
- Faraday Rotaion Converts E to B mode signals
- \blacksquare Helical fields can also cause T B, E B cross correlations!
- Non Gaussian Statistics (Seshadri, KS 2009, Caprini et al 2009, Trivedi, KS, TRS, 2010, 2012, 2014..)

Primordial few nG magnetic fields potentially detectable using the CMB

Vector Mode anisotropies

Symposium on Astro-Particle and Nuclear Physics, Jamia Millia Islamia, Delhi, Jan. 21, 2014 – p. 13/21

CMB signals: scalar+Tensor + Vector

 $B_{\lambda} = 4.7 \mu$ G, $n \sim -3$, Including passive component, Shaw & Lewis, PRD, 2010

Symposium on Astro-Particle and Nuclear Physics, Jamia Millia Islamia, Delhi, Jan. 21, 2014 – p. 14/21

Planck Constraints on primordial B

Constraints on RMS B field, on $1 \,\mathrm{Mpc}$ scale assuming scale invariant spectrum Ade et al. Arxiv: 1303.5076v2

Symposium on Astro-Particle and Nuclear Physics, Jamia Millia Islamia, Delhi, Jan. 21, 2014 – p. 15/21

CMB Non Gaussianity from primordial B

Brown, Crittenden, PRD, 2005; Seshadri, KS, PRL, 2009; Caprini et al., JCAP, 2009

- Magnetic stresses quadratic in B \rightarrow Magnetically induced CMB signals non-Gaussian even at lowest order!
- Due to scalar passive mode, on large angular scales, $l_1(l_1+1)l_3(l_3+1)b_{l_1l_2l_3} \sim 6-9 \times 10^{-16}$, for $B_0 \sim 3$ nG, nearly scale invariant magnetic spectrum. (Trivedi, KS, Seshadri, PRD, 2010)
- Signal scales as B_0^6 and one gets upper limit $B_0 < 1 2$ nG, just from scalar SW contribution
- Stronger sub nano Gauss limit from tripsectrum (Trivedi, TRS, KS, PRL, 2012; Trivedi, KS, TRS, PRD, 2014)
- Lots still need to be calculated and compared to data!

Structure formation signals

- Extra power in the matter power spectrum on small scales (Gopal, Sethi, 2003)
- First dwarf galaxies form at high z > 10 even for $B \sim 0.1 nG$, but for masses larger than magnetic and thermal Jeans mass.
- B field induced first structures Reionization? (Sethi, KS 2005, Tashiro, Sugiyama, 2006; Schleicher, Banerjee, Klessen, 08).
- Influence formation of first structures through catalyzing Molecule formation (Sethi, Nath, KS 2008; Schleicher et al 2009)
- Probe through redshifted HI 21 cm signals (Tashiro, Sugiyama, 06;Schleicher, Banerjee, Klessen, 09; Sethi, KS 09)

Global 21 cm signals from reionization

HI correlation signals from reionization

Both ionization and density inhomogeneities contribute

Final Thoughts?

- Universe is Magnetized!
- Origin from the early universe phase transitions? Helical magnetic fields particularly interesting.
- Need Compelling generation mechanism or Observations
- Primordial fields leave signatures in CMB, Structure formation
- Redshifted 21 cm signals detectable with upcoming radio telescopes for $B_0 \sim 0.5$ nG
- Also Radio RMs (SKA), High energy CRs and Gamma Rays!
- Dynamos certainly needed to maintain fields BUT Need to understand their saturation better.

THANK YOU!

Symposium on Astro-Particle and Nuclear Physics, Jamia Millia Islamia, Delhi, Jan. 21, 2014 – p.21/21